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Note 

Solutions to Divergence Form Equations 
Using the Method of Partial lmplicitization 

The original development of partial implicitization is given in [I] and was shown 
in [2] to be well suited for use on vector-processing computers since the method is 
an explicit unconditionally stable numerical technique. This method has recently 
been modified from its original second-order accurate form to achieve fourth- 
order accuracy, see [3]; however, all of the developments to date have made for 
equations cast in nondivergence form. As shown in [4], equations cast in the diver- 
gence form are to be preferred because of their inherently greater accuracy. The 
success (unconditional stability) of the method of partial implicitization depends 
directly on the nondivergence form of the equations to be solved. Thus a problem 
arises of how to apply partial implicitization to divergence form equations. Since 
the method of partial implicitization is applicable only to relaxing problems to 
their steady state (method is not applicable to true transient problems), a simple 
mathematical manipulation can be carried out which will produce the desired 
partial implicitization solution to divergence form equations. 

Using Burgers’ equation as a model equation (see [I, 4, 5]), the partial impliciti- 
zation solution to divergence form equations can be demonstrated. The non- 
divergence form of Burgers’ equation is 

and the divergence form is 

g+gp2- U)-+o. 

As discussed in [6], the linearized von Neumann stability condition for equations 
in nondivergence form is the same as for the divergence form. With this important 
fact, Eq. (1) can be modified to achieve both unconditional stability and divergence 
form by adding the term 
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to the right-hand side of Eq. (1). Before doing so, the following time related quanti- 
ties are defined: superscript N + 1 is the new (advanced) time level at which a 
solution is to be obtained and superscript N is the current time level at which all 
quantities are known. Eq. (1) becomes 

g+ ((u+& v gN+l = ((u - ;, F - ; G (U2 - U)),. (3) 

In the von Neumann stability analysis, the right-hand side of Eq. (3) is identically 
zero and does not enter the stability analysis. Thus Eq. (3), when put in partial 
implicitization form as in [I], is unconditionally stable. In addition Eq. (3) in the 
steady-state limit does, in fact, conform to the desired divergence form 

;$J2- U)-l+o. 

Solutions to Eqs. (1) and (3) were obtained using the method of partial impli- 
citization as given in [l]. These solutions were obtained over the range -5 < 7 < 5 
for v = 4, is, and &. The boundary conditions were 

U=1@?7=-5 
u=o@)y =5. 

With the above boundary conditions, the solution of Burgers’ equation represents a 
shock wave centered about the point 7 = 0. The initial conditions used to begin 
the calculations are: 

U=l for -5 < 7j 6 -11 
u = 0.5 for r] =0 
u=o for h < 77 < 5. 

A range of step sizes (h = do) were run and the error between the exact solution 
and the partial implicitization solution was calculated as 

where M is the total number of interior points and U, is the exact solution. The 
results are given in Fig. 1 where it is immediately obvious that the divergence form 
is, as expected, always more accurate (by approximately a factor of 3) than the 
nondivergence form. The slopes of the curves in Fig. 1 range from a minimum of 
1.97 to a maximum of 2.05 indicating second-order accuracy as would be expected 
from the use of equally spaced central finite differences. 
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FIG. 1. Average errors from divergence and nondivergence form solutions to Burgers’ 
equation. 

Thus by adding the nondivergence terms and subtracting the divergence terms 
on the right-hand side of the nondivergence equation, a divergence form solution 
can be obtained in an unconditionally stable manner using partial implicitization. 
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